Low c-Kit expression identifies primitive, therapy-resistant CML stem cells

JCI Insight. 2023 Jan 10;8(1):e157421. doi: 10.1172/jci.insight.157421.

Abstract

Despite the efficacy of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML), malignant long-term hematopoietic stem cells (LT-HSCs) persist as a source of relapse. However, LT-HSCs are heterogenous and the most primitive, drug-resistant LT-HSC subpopulations are not well characterized. In normal hematopoiesis, self-renewal and long-term reconstitution capacity are enriched within LT-HSCs with low c-Kit expression (c-KITlo). Here, using a transgenic CML mouse model, we found that long-term engraftment and leukemogenic capacity were restricted to c-KITlo CML LT-HSCs. CML LT-HSCs demonstrated enhanced differentiation with expansion of mature progeny following exposure to the c-KIT ligand, stem cell factor (SCF). Conversely, SCF deletion led to depletion of normal LT-HSCs but increase in c-KITlo and total CML LT-HSCs with reduced generation of mature myeloid cells. CML c-KITlo LT-HSCs showed reduced cell cycling and expressed enhanced quiescence and inflammatory gene signatures. SCF administration led to enhanced depletion of CML primitive progenitors but not LT-HSCs after TKI treatment. Human CML LT-HSCs with low or absent c-KIT expression were markedly enriched after TKI treatment. We conclude that CML LT-HSCs expressing low c-KIT levels are enriched for primitive, quiescent, drug-resistant leukemia-initiating cells and represent a critical target for eliminating disease persistence.

Keywords: Adult stem cells; Growth factors; Hematology; Leukemias; Oncology.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Differentiation
  • Hematopoietic Stem Cells / metabolism
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / genetics
  • Mice
  • Mice, Transgenic
  • Stem Cell Factor / metabolism

Substances

  • Stem Cell Factor
  • KIT protein, human
  • Kit protein, mouse