DNA replication initiation is a complex process involving various genetic and epigenomic signatures. The correct identification of replication origins (ORIs) could provide important clues for the study of a variety of diseases caused by replication. Here, we design a computational approach named iORI-Epi to recognize ORIs by incorporating epigenome-based features, sequence-based features, and 3D genome-based features. The iORI-Epi displays excellent robustness and generalization ability on both training datasets and independent datasets of K562 cell line. Further experiments confirm that iORI-Epi is highly scalable in other cell lines (MCF7 and HCT116). We also analyze and clarify the regulatory role of epigenomic marks, DNA motifs, and chromatin interaction in DNA replication initiation of eukaryotic genomes. Finally, we discuss gene enrichment pathways from the perspective of ORIs in different replication timing states and heuristically dissect the effect of promoters on replication initiation. Our computational methodology is worth extending to ORI identification in other eukaryotic species.
Copyright © 2022 Fu-Ying Dao et al.