Bacteriorhodopsin (bR) is a light-driven microbial receptor, and lysine 159 (K159) is a charged residue on the cytoplasmic (CP) side of its E-F loop. However, its conformation and function remain unknown due to fast surface dynamics. By utilizing a 13C, 15N-labeled lysine (K) as an isotope probe, we created a network of site-specific amide-I vibrational signatures (backbone carbonyl stretch) to identify the frequency contribution of the labeled residues to the amide-I excitonic band structure. Thus, the red-shifted amide-I frequency in the 13C, 15N-lysine-labeled bR (uK-bR) to the unlabeled bR (WT-bR) could be differentiated and examined by ultrafast two-dimensional vibrational echo infrared (2D IR) spectroscopy. Our results showed that the backbone carbonyl of K159 is located at a high frequency of ca. 1693 cm-1 and has a vibrational excited-state relaxation time shorter than the bulk helical amide-I mode at the same frequency, suggesting that K159 may possess a hydrogen-bonded γ-turn structure with E161, one of the carboxylate residues on the CP surface of bR. The 2D solid-state NMR study of uK-bR also revealed conformational dependent lysine residues, from which K159 was found to involve the turn motif. This γ-turn structure maintained by K159 may help to stabilize the E-F loop and support E161 in attracting protons from the bulk during the late stage of the bR photocycle. The combined spectroscopic approach illustrated in this work may be applied to map residue-specific local structures and dynamics of other receptors and large proteins.