Inhalation and dermal absorption as dominant pathways of PCB exposure for residents of contaminated apartment buildings

Int J Hyg Environ Health. 2023 Jan:247:114056. doi: 10.1016/j.ijheh.2022.114056. Epub 2022 Nov 14.

Abstract

Applications of polychlorinated biphenyls (PCBs) in buildings and their persistence in indoor environments have led to cases of current and highly elevated exposure in humans, despite the global cease of production decades ago. Personal exposure to PCBs was assessed among residents in a social housing estate in Denmark containing both contaminated (n = 67) and non-contaminated (n = 23) apartments. Samples and estimated daily intakes (EDIs) were assessed for 15 PCB congeners, and body burden, which was limited by the dietary data availability, was compared across 7 indicator PCBs, with its sum (PCBsum7) often applied in European regulation of PCBs. Median PCBsum7 EDI across measured pathways for exposed residents was 101 ng· (kg bodyweight)-1· day-1, with the majority of exposure (60%) coming from inhalation of contaminated indoor air. Calculated from both PCBs measured in indoor air and on hand wipes, dermal absorption estimates showed comparable results and served as a secondary exposure pathway, accounting for 35% of personal exposure and considering selected assumptions and sources of physical-chemical parameters. Estimates revealed that diet was the primary PCB source among the reference group, accounting for over 75% of the PCBsum7 EDI across exposure routes. When evaluating overall EDIs across the two study groups and including dietary estimates, PCB exposure among exposed residents was around 10 times higher than the reference group. Solely within the exposed population, pathway-specific body burdens were calculated to account for exposure across years of residence in contaminated apartments, where lower chlorinated PCBs were dominant in indoor air. Among these dominant congeners, estimated body burdens of PCB-28 and -52 were significantly correlated with measured serum (rs = 0.49, 0.45; p < 0.001). This study demonstrates that inhalation and dermal absorption serve as dominant exposure pathways for residents of apartments contaminated with predominantly lower chlorinated PCBs and suggest that predictions of body burden from indoor environment measurements may be comparable to measured serum PCBs.

Keywords: Body burden; Dermal uptake; Exposure pathways; Indoor exposure; Inhalation; Polychlorinated biphenyl.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollution*
  • Body Burden
  • Body Weight
  • Hand
  • Humans
  • Polychlorinated Biphenyls*

Substances

  • Polychlorinated Biphenyls