Insulin sensitivity is preserved in mice made obese by feeding a high starch diet

Elife. 2022 Nov 17:11:e79250. doi: 10.7554/eLife.79250.

Abstract

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.

Keywords: cell biology; ceramide; insulin sensitivity; mouse; obesity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ceramides
  • Diabetes Mellitus, Type 2*
  • Diet, High-Fat / adverse effects
  • Glucose
  • Glucose Intolerance*
  • Insulin
  • Insulin Resistance*
  • Mice
  • Mice, Obese
  • Obesity
  • Starch

Substances

  • Starch
  • Insulin
  • Ceramides
  • Glucose

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.