LiNi0.8Co0.1Mn0.1O2 (NCM811) has attracted extensive attention due to its high energy density. Particularly, the Li-Ni mixing phenomenon and interfacial side reactions contribute to the rate and cycling performance of NCM811. Cross-linked polyacrylonitrile (cPAN) has certain electrical conductivity and is considered a competitive coating material. In this study, NCM811@cPAN was successfully prepared by wet chemical and heat treatments. The formation process of cPAN systematically analyzed by physical structure tests and microscopic morphological analysis demonstrates that cPAN existed on the surface of NCM811. The electrochemical results demonstrate that NCM811@cPAN has high initial coulombic efficiency (98.14% at 0.1C), good cycle stability and rate performance (222.30 mA h g-1 at 0.5C). The uniform and continuous nano cPAN coating helped avoid direct contact between NCM811 and the electrolyte, enhancing its interfacial stability. Moreover, cPAN exhibited certain electronic conductivity and generated a spinel structure, enhancing the diffusion rate of e- and Li+. Therefore, the electrochemical performance of NCM811 can be improved. This method and the coating material provide an effective strategy for the surface modification of other cathode materials used in Li-ion batteries.