The false Rhodes grasses [Leptochloa crinita (Lag.) P.M. Peterson and N.W. Snow and Leptochloa pluriflora (E. Fourn.) P.M. Peterson and N.W. Snow] are considered valuable native forage resources for arid and semiarid rangelands in Argentina and the United States. Effectively using plant materials as forage under aridity conditions requires understanding their resource allocation under those conditions. In the present study, plant functional traits were evaluated in six populations of each false Rhodes grass species from different geographic origin in a humid and an arid region. The evaluation was focused on seed weight, due to the key role of this trait in plant survival. The implication of seed weight in germination under osmotic stress and trade-off relationships between functional traits were also analysed. A fixed ontogenetic variation was found in both species, since populations maintained a stable seed weight across environments. The tolerance to osmotic stress at germination stage was more related to seed weight than to population origin or maternal environment of seeds; heavier-seeded populations produced heavier seedlings instead of a higher number of germinated seeds or higher germination rates. Some traits varied between environments but other traits exhibited a fixed response. Variation patterns among populations were similar within environments and in some cases even for populations from the same geographic origin, revealing a fixed ontogenetic variation; this phenomenon was clearer in L. crinita than in L. pluriflora. Moreover, several different trade-off strategies were detected in both species. These results reinforce the knowledge about the key role of seed weight in survival and performance of seedlings at initial growth stages under arid conditions; however, at advanced stages, other traits would have an important function in growth and development of false Rhodes grasses.
Keywords: L. pluriflora; Leptochloa crinita; germination; local adaptation; plant functional traits.