In this work, the development of nanocomposite systems based on reduced graphite oxide (rGO) was combined with the development of crosslinked materials characterized by dynamic covalent bonds, i.e., a covalent associative network, starting from ad-hoc synthesized hydroxyl terminated polycaprolactone (PCL-OH). The crosslinking reaction was carried out using methylenediphenyl diisocyanate (MDI) to create systems capable of bond exchanges via transesterification and transcarbamoylation reactions, in the presence of stannous octoate as a catalyst. The above materials were prepared at two different temperatures (120 and 200 °C) and two PCL-OH:MDI ratios. FT-IR measurements proved the formation of urethane bonds in all the prepared samples. Crosslinking was demonstrated by contacting the samples with a solvent capable of dissolving the star-shaped PCL. These tests showed a significant increase in the crosslinked fraction with increasing the temperature and the PCL-OH:MDI ratio. In order to evidence the effect of crosslinking on rGO dispersion and the final properties of the material, a nanocomposite sample was also prepared using a linear commercial PCL, with the nanofiller mixed under the same conditions used to develop the crosslinked systems. The dispersion of rGO, which was investigated using FE-SEM measurements, was similar in the different systems prepared, indicating that the crosslinking process had a minor effect on the dispersibility of the nanofiller. As far as the thermal properties are concerned, the DSC measurements of the prepared samples showed that the crosslinking leads to a decrease in the crystallinity of the polymer, a phenomenon which was particularly evident in the sample prepared at 200 °C with a PCL-OH: MDI ratio of 1:1.33 and was related to the decrease in the polymer chain mobility. Moreover, rGO was found to act as a nucleating agent and increase the crystallization temperature of the nanocomposite sample based on linear commercial PCL, while the contribution of rGO in the crosslinked nanocomposite samples was minor. Rheological measurements confirmed the crosslinking of the PCL-OH system which generates a solid-like behavior depending on the PCL-OH:MDI ratio used. The presence of rGO during crosslinking generated a further huge increase in the viscosity of the melt with a remarkable solid-like behavior, confirming a strong interaction between rGO and crosslinked PCL. Finally, the prepared nanocomposites exhibited self-healing and recyclability properties, thus meeting the requirements for sustainable materials.
Keywords: PCL; biopolymers; nanocomposites; rGO; vitrimers.