In patients with slowly progressive spastic paraparesis, the differential diagnosis of primary progressive multiple sclerosis (PPMS) and hereditary spastic paraplegia (HSP) can be challenging. Serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising fluid biomarkers to support the diagnostic workup. Serum NfL is a marker of neuroaxonal decay sensitive to temporal changes, while elevated sGFAP levels may reflect astrocytal involvement in PPMS. We assessed sNfL and sGFAP levels in 25 patients with PPMS, 25 patients with SPG4 (the most common type of HSP) and 60 controls, using the highly sensitive single-molecule array (Simoa) platform. Patients were matched in age, sex, age at onset, disease duration and disease severity. Serum NfL levels were significantly increased in PPMS compared to SPG4 (p = 0.041, partial η² = 0.088), and there was a trend toward relatively higher sGFAP levels in PPMS (p = 0.097). However, due to overlapping biomarker values in both groups, we did not find sNfL and sGFAP to be useful as differential biomarkers in our cohort. The temporal dynamics indicate sNfL and sGFAP levels are most markedly elevated in PPMS in earlier disease stages, supporting their investigation in this group most in need of a diagnostic biomarker.
Keywords: HSP; PPMS; SPG4; Serum GFAP; Serum NfL; biomarkers.