In this work, we have used the QM(CASPT2//CASSCF)/MM approach to study the photophysical properties and relaxation mechanism of 5-azacytosine (5-AC) in aqueous solution. Based on the relevant minimum-energy structures and intersection structures, and excited-state decay paths in the S1, S2, T1, T2, and S0 states, several feasible excited-state nonradiative decay channels from the initially populated S2(ππ*) state are proposed. Two major channels are singlet-mediated nonradiative pathways, in which the S2 system will internally convert (IC) to the S0 state directly or mediated by the 1nπ* state via a 1ππ*/1nπ* conical intersection. The minor ones are related to intersystem crossing (ISC) processes. The system would populate to the T1 state via the S2 → S1 → T1 or S2 → T2 → T1 ISC process, followed by further decay to the S0 state via the transition from T1 to S0. However, due to small spin-orbit couplings (SOCs) at the singlet-triplet crossing points, the related ISC would be less efficient and probably take longer. The present work rationalizes the ultrafast excited-state decay dynamics of 5-AC in aqueous solution and its low quantum yields of triplets and fluorescence. It provides important mechanistic insights into understanding 5-AC's derivatives and analogues.