Aggregation of data, including deep sequencing of mRNA and miRNA data in jejunum mucosa, abundance of immune cells, metabolites, or hormones in blood, composition of microbiota in digesta and duodenal mucosa, and production traits collected along the lifespan, provides a comprehensive picture of lifelong adaptation processes. Here, respective data from two laying hen strains (Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL) collected at 10, 16, 24, 30, and 60 wk of age were analyzed. Data integration revealed strain- and stage-specific biosignatures, including elements indicative of molecular pathways discriminating the strains. Although the strains performed the same, they differed in the activity of immunological and metabolic functions and pathways and showed specific gut-microbiota-interactions in different production periods. The study shows that both strains employ different strategies to acquire and maintain their capabilities under high performance conditions, especially during the transition phase. Furthermore, the study demonstrates the capacity of such integrative analyses to elucidate molecular pathways that reflect functional biodiversity. The bioinformatic reduction of the multidimensional data provides good guidance for further manual review of the data.
Keywords: Multi-omics; RNAseq; host-gut microbiota; immune cells; laying hen.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.