Diabetic wound is one of the common complications in diabetic patients, which exhibits chronic, hard-to-heal characteristics. The healing process of wounds is impaired by several factors, including excessive oxidative stress, blocked angiogenesis, and bacterial infection. The therapeutic effects of traditional microneedle patches remain not satisfactory, due to their difficulty simultaneously targeting multiple targets to treat diabetic wounds. As such, there is an urgent need to develop a multifunctional microneedle (MN) patch for promoting the healing of diabetic wounds. A multifunctional MN patch with antioxidant, proangiogenesis, and antibacterial capacities was fabricated to target the pathogenesis of diabetic wounds. Silk fibroin methacryloyl, which has excellent biocompatibility, stable mechanical properties, and well processability, and is selected as the base material for multifunctional MN patches. Prussian blue nanozymes (PBNs) and vascular endothelial growth factor (VEGF) are encapsulated in tips of MN patches, Polymyxin is encapsulated in base layers of MN patches. Based on synergic properties of these components, multifunctional MN patches exhibit excellent biocompatibility, drug-sustained release, proangiogenesis, antioxidant, and antibacterial properties. The developed multifunctional MN patches accelerate diabetic wound healing, providing a potential therapeutic approach.
Keywords: Prussian blue nanozymes; diabetic wounds; multifunctional microneedles; silk fibroin methacryloyl; vascular endothelial growth factor.
© 2022 Wiley-VCH GmbH.