M-STAR is a next generation polarized neutron reflectometer with advanced capabilities. A new focusing guide concept is optimized for samples with dimensions down to a millimeter range. A proposed hybrid pulse-skipping chopper will enable experiments at constant geometry at one incident angle in a broad range of wavevector transfer Q up to 0.3 A-1 for specular, off-specular, and GISANS measurements. M-STAR will empower nanoscience and spintronics studies routinely on small samples (∼2 × 2 mm2) and of atomic-scale thickness using versatile experimental conditions of magnetic and/or electric fields, light, and temperature applied in situ to novel complex device-like nanosystems with multiple buried interfaces. M-STAR will enable improved grazing incidence diffraction measurements, as a surface-sensitive depth-resolved probe of, e.g., the out-of-plane component of atomic magnetic moments in ferromagnetic, antiferromagnetic, and more complex structures as well as in-plane atomic-scale structures inaccessible with contemporary diffractometry and reflectometry. New horizons will be opened by the development of an option to probe near-surface dynamics with inelastic grazing incidence scattering in the time-of-flight mode. These novel options in combination with ideally matched parameters of the second target station will place M-STAR in the world's leading position for high resolution polarized reflectometry.