RNA polymerase II transcription attenuation at the yeast DNA repair gene DEF1 is biologically significant and dependent on the Hrp1 RNA-recognition motif

G3 (Bethesda). 2023 Jan 12;13(1):jkac292. doi: 10.1093/g3journal/jkac292.

Abstract

Premature transcription termination (i.e. attenuation) is a potent gene regulatory mechanism that represses mRNA synthesis. Attenuation of RNA polymerase II is more prevalent than once appreciated, targeting 10-15% of mRNA genes in yeast through higher eukaryotes, but its significance and mechanism remain obscure. In the yeast Saccharomyces cerevisiae, polymerase II attenuation was initially shown to rely on Nrd1-Nab3-Sen1 termination, but more recently our laboratory characterized a hybrid termination pathway involving Hrp1, an RNA-binding protein in the 3'-end cleavage factor. One of the hybrid attenuation gene targets is DEF1, which encodes a repair protein that promotes degradation of polymerase II stalled at DNA lesions. In this study, we characterized the chromosomal DEF1 attenuator and the functional role of Hrp1. DEF1 attenuator mutants overexpressed Def1 mRNA and protein, exacerbated polymerase II degradation, and hindered cell growth, supporting a biologically significant DEF1 attenuator function. Using an auxin-induced Hrp1 depletion system, we identified new Hrp1-dependent attenuators in MNR2, SNG1, and RAD3 genes. An hrp1-5 mutant (L205S) known to impair binding to cleavage factor protein Rna14 also disrupted attenuation, but surprisingly no widespread defect was observed for an hrp1-1 mutant (K160E) located in the RNA-recognition motif. We designed a new RNA recognition motif mutant (hrp1-F162W) that altered a highly conserved residue and was lethal in single copy. In a heterozygous strain, hrp1-F162W exhibited dominant-negative readthrough defects at several gene attenuators. Overall, our results expand the hybrid RNA polymerase II termination pathway, confirming that Hrp1-dependent attenuation controls multiple yeast genes and may function through binding cleavage factor proteins and/or RNA.

Keywords: DEF1; CPF-CF; Hrp1; NNS; RNA polymerase II; RRM; attenuation; transcription termination.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosomal Proteins, Non-Histone / metabolism
  • DNA Helicases / metabolism
  • DNA Repair
  • RNA Helicases / metabolism
  • RNA Polymerase II / genetics
  • RNA Polymerase II / metabolism
  • RNA Recognition Motif
  • RNA, Messenger / genetics
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • mRNA Cleavage and Polyadenylation Factors / genetics

Substances

  • RNA Polymerase II
  • Saccharomyces cerevisiae Proteins
  • RNA, Messenger
  • HRP1 protein, S cerevisiae
  • mRNA Cleavage and Polyadenylation Factors
  • DEF1 protein, S cerevisiae
  • Chromosomal Proteins, Non-Histone
  • SEN1 protein, S cerevisiae
  • DNA Helicases
  • RNA Helicases