Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Keywords: Heterogeneity; Immunotherapy resistance; Macrophages; Myeloid cells; Myeloid-derived suppressor cells; Nanomedicine; Neutrophils; Physical heterogeneity.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.