Triazol-Methanaminium-Pillar[5]arene-Functionalized Single Nanochannel for Quantitative Analysis of Pyrophosphate in Water

Anal Chem. 2022 Nov 1;94(43):14889-14897. doi: 10.1021/acs.analchem.2c02161. Epub 2022 Oct 21.

Abstract

Inorganic pyrophosphate (PPi) is an important biological functional anion and plays crucial roles in life science, environmental science, medicine, and chemical process. Quantification of PPi in water has far-reaching significance for life exploration, disease diagnosis, and water pollution control. The label-free quantitative detection of PPi anions with a nanofluidic sensing device based on a conical single nanochannel is demonstrated. The channel surface is functionalized with a synthetic PPi receptor, triazol-methanaminium-functionalized pillar[5]arene (TAMAP5), using carbodiimide coupling chemistry. Due to the specific binding between TAMAP5 and PPi, the functionalized nanochannel can discriminate PPi from other inorganic anions with high selectivity through ionic current recording, even in the presence of various interfering anions. The current response exhibits a linear correlation with PPi concentration in the range from 1 × 10-7 to 1 × 10-4 M with a limit of detection of 6.8 × 10-7 M. A spike-and-recovery analysis of PPi in East Lake water samples indicates that the proposed nanofluidic sensor has the ability to quantitate micromolar concentrations of PPi in environmental water samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions
  • Diphosphates* / analysis
  • Water*

Substances

  • diphosphoric acid
  • Diphosphates
  • Water
  • pillar(5)arene
  • Anions