Echinococcosis is a zoonotic parasitic infectious disease caused by human or domestic animals infected with Echinococcus granulosus. China is the country with the heaviest disease burden caused by Echinococcosis in the world. Therefore, it is feasible to evaluate the prevalence and distribution of echinococcosis using relevant ecological methods, combined with environmental factors and human activities. In this study, MaxEnt was used to predict the distribution range of E. granulosus in China under current and future climate scenarios and explain the impact of environmental variables on its distribution. The results showed that elevation (El), annual mean temperature (bio1), human footprint (Hf), annual precipitation (bio12), mean temperature of warmest quarter (bio10), and mean temperature of wettest quarter (bio8) were identified as the dominant environmental variables. In Tibet, the most suitable habitats (25.9 × 104 km2) of E. granulosus were distributed in Nyingchi and Qamdo in the east, Shigatse and Shannan in the south, and Ali in the west. In Sichuan, the most suitable habitat (18.83 × 104 km2) was located in Aba, Ganzi, and Liangshan. In Qinghai, the most suitable habitat (13.05 × 104 km2) mainly included Yushu in the southwest; Guoluo in the southeast; Haidong, Huangnan, Xining, and Hainan in the east; and Haixi in the west. In Gansu, the most suitable habitat (7.36 × 104 km2) was located in Gannan and Linxia in the southwest and Wuwei and Dingxi in the middle. In Yunnan, the most suitable habitat (1.53 × 104 km2) was distributed in Diqing in the northwest. Under future climate scenarios, the area of the most suitable habitat of E. granulosus showed an obvious expansion trend, with an increase of 44.64-70.76%. Trajectory trend of centroids showed that the most suitable habitat would move to the west in the future, and the increased areas were mainly located in the west of the current most suitable habitat. AUC values of the training data and test data were 0.936 ± 0.001 ~ 0.97 ± 0.006 and 0.912 ± 0.006 ~ 0.956 ± 0.015, respectively. The result can provide a theoretical basis for the prevention, monitoring, and early warning of echinococcosis in China.
Keywords: Climate change; Echinococcus granulosus; MaxEnt; Suitable habitat.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.