Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor

Eur Respir J. 2023 Apr 1;61(4):2102861. doi: 10.1183/13993003.02861-2021. Print 2023 Apr.

Abstract

Background: Abnormal macrophage function caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is a critical contributor to chronic airway infections and inflammation in people with cystic fibrosis (PWCF). Elexacaftor/tezacaftor/ivacaftor (ETI) is a new CFTR modulator therapy for PWCF. Host-pathogen and clinical responses to CFTR modulators are poorly described. We sought to determine how ETI impacts macrophage CFTR function, resulting effector functions and relationships to clinical outcome changes.

Methods: Clinical information and/or biospecimens were obtained at ETI initiation and 3, 6, 9 and 12 months post-ETI in 56 PWCF and compared with non-CF controls. Peripheral blood monocyte-derived macrophages (MDMs) were isolated and functional assays performed.

Results: ETI treatment was associated with increased CF MDM CFTR expression, function and localisation to the plasma membrane. CF MDM phagocytosis, intracellular killing of CF pathogens and efferocytosis of apoptotic neutrophils were partially restored by ETI, but inflammatory cytokine production remained unchanged. Clinical outcomes including increased forced expiratory volume in 1 s (+10%) and body mass index (+1.0 kg·m-2) showed fluctuations over time and were highly individualised. Significant correlations between post-ETI MDM CFTR function and sweat chloride levels were observed. However, MDM CFTR function correlated with clinical outcomes better than sweat chloride.

Conclusion: ETI is associated with unique changes in innate immune function and clinical outcomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Chloride Channel Agonists / therapeutic use
  • Chlorides / metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Cystic Fibrosis* / drug therapy
  • Humans
  • Macrophages / metabolism
  • Mutation

Substances

  • Cystic Fibrosis Transmembrane Conductance Regulator
  • elexacaftor
  • ivacaftor
  • tezacaftor
  • Chlorides
  • Chloride Channel Agonists