Implementing comprehensive pharmacogenomics in a community hospital-associated primary care setting

J Am Pharm Assoc (2003). 2023 Jan-Feb;63(1):188-192. doi: 10.1016/j.japh.2022.09.002. Epub 2022 Sep 9.

Abstract

Background: Pharmacogenomics (PGx) is an emerging field. Many drug-gene interactions are known but not yet routinely addressed in clinical practice. Therefore, there is a significant gap in care, necessitating development of implementation strategies.

Objective: The objective of the study was to assess the impact of implementing a PGx practice model which incorporates comprehensive pharmacogenomic risk evaluation, testing and medication optimization administered by 7 PGx-certified ambulatory care pharmacists embedded across 30 primary care clinic sites.

Methods: Pharmacogenomic services were implemented in 30 primary care clinics within the Cincinnati, Ohio area. Patients are identified for pharmacogenomic testing using a clinical decision support tool (CDST) that is fully integrated in the electronic medical record (EMR) or by provider designation (e.g., psychotropic drug failure). Pharmacogenomic testing is performed via buccal swab using standardized clinic processes. Discrete data results are returned directly into the EMR/CDST for review by PGx-certified ambulatory care pharmacists. Recommendations and prescriptive changes are then discussed and implemented as a collaborative effort between pharmacist, primary care provider, specialists, and patient.

Results: A total of 422 unique interactions were assessed by the embedded ambulatory care PGx pharmacists (N = 7) during this interim analysis. About half (213) were pharmacogenomic interactions, and of these, 124 were actionable. When an intervention was actionable, 82% of the time a change in medication was recommended. The underlying reasons for recommending therapy alterations were most commonly ineffective therapy (43%), adverse drug reaction prevented (34%), or adverse drug reaction observed (13%).

Conclusion: Variations in drug metabolism, response, and tolerability can negatively impact patient outcomes across many disease states and treatment specialties. Incorporation of pharmacogenomic testing with accessible clinical decision support into the team-based care model allows for a truly comprehensive review and optimization of medications. Our initial analysis suggests that comprehensive PGx testing should be considered to enhance medication safety and efficacy in at-risk patients.

Publication types

  • Review

MeSH terms

  • Drug-Related Side Effects and Adverse Reactions*
  • Hospitals, Community
  • Humans
  • Pharmacogenetics* / methods
  • Pharmacogenomic Testing
  • Primary Health Care