Adaptive control is the online adjustment of behavior to guide and optimize responses after errors or conflict. The neural circuits involved in monitoring and adapting behavioral performance following error are poorly understood. The prefrontal cortex (PFC) plays a critical role in this form of control. However, these brain areas are densely connected with many other regions, and it is unknown which projections are critical for adaptive behavior. Here, we tested the involvement of four distinct dorsal and ventral prefrontal cortical projections to striatal and thalamic target areas in adaptive control. We re-analyzed data from published experiments, using trial-by-trial analyses of behavior in an operant task for attention and impulsivity. We find that male rats slow their responses and perform worse following errors. Moreover, by combining retrograde labeling and chemogenetic silencing, we find that dorsomedial prefrontal pyramidal neurons that project to the lateral nucleus of the mediodorsal thalamus (MDL) are involved in posterror performance and timing of responses, specifically with unpredictable delays until stimulus presentation. Together, these data show that dorsal medial PFC (mPFC) projection neurons targeting the lateral MDT regulate adaptive control to flexibly optimize behavioral responses in goal-directed behavior.
Keywords: 5-CSRTT; adaptive control; cognitive control; mediodorsal thalamus; prefrontal cortex.
Copyright © 2022 Bruinsma et al.