Sexual dimorphism in the molecular mechanisms of insulin resistance during a critical developmental window in Wistar rats

Cell Commun Signal. 2022 Oct 12;20(1):154. doi: 10.1186/s12964-022-00965-6.

Abstract

Background: Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is an early marker of metabolic dysfunction. However, IR also appears in physiological contexts during critical developmental windows. The molecular mechanisms of physiological IR are largely unknown in both sexes. Sexual dimorphism in insulin sensitivity is observed since early stages of development. We propose that during periods of accelerated growth, such as around weaning, at postnatal day 20 (p20) in rats, the kinase S6K1 is overactivated and induces impairment of insulin signaling in its target organs. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage.

Methods: We determined systemic insulin sensitivity through insulin tolerance tests, glucose tolerance tests, and blood glucose and insulin levels under fasting and fed conditions at p20 and adult male and female Wistar rats. Furthermore, we quantified levels of S6K1 phosphorylated at threonine 389 (T389) (active form) and its target IRS1 phosphorylated at serine 1101 (S1101) (inhibited form). In addition, we assessed insulin signal transduction by measuring levels of Akt phosphorylated at serine 473 (S473) (active form) in white adipose tissue and skeletal muscle through western blot. Finally, we determined the presence and function of GLUT4 in the plasma membrane by measuring the glucose uptake of adipocytes. Results were compared using two-way ANOVA (With age and sex as factors) and one-way ANOVA with post hoc Tukey's tests or t-student test in each corresponding case. Statistical significance was considered for P values < 0.05.

Results: We found that both male and female p20 rats have elevated levels of glucose and insulin, low systemic insulin sensitivity, and glucose intolerance. We identified sex- and tissue-related differences in the activation of insulin signaling proteins in p20 rats compared to adult rats.

Conclusions: Male and female p20 rats present physiological insulin resistance with differences in the protein activation of insulin signaling. This suggests that S6K1 overactivation and the resulting IRS1 inhibition by phosphorylation at S1101 may modulate to insulin sensitivity in a sex- and tissue-specific manner. Video Abstract.

Keywords: Adipose tissue; Critical developmental window; GLUT4; Glucose homeostasis; IRS1; Insulin resistance; Insulin signaling pathway; S6K1 kinase; Sexual dimorphism; Skeletal muscle.

Plain language summary

Insulin regulates the synthesis of carbohydrates, lipids and proteins differently between males, and females. One of its primary functions is maintaining adequate blood glucose levels favoring glucose entry in muscle and adipose tissue after food consumption. Insulin resistance (IR) is a condition in which the response of organs to insulin is impaired. IR is frequently associated with metabolic dysfunction such as inflammation, obesity, or type 2 diabetes. However, physiological IR develops in healthy individuals during periods of rapid growth, pregnancy, or aging by mechanisms not fully understood. We studied the postnatal development, specifically around weaning at postnatal day 20 (p20) of Wistar rats. In previous works, we identified insulin resistance during this period in male rats. This work aimed to characterize IR at p20, determine its underlying mechanisms, and identify whether sexual dimorphism in physiological IR occurs during this stage. We found that p20 rats of both sexes have elevated blood glucose and insulin levels, low systemic insulin sensitivity, and glucose intolerance. We identified differences in insulin-regulated protein activation (S6K1, IRS1, Akt, and GLUT4) between sexes in different tissues and adipose tissue depots. Studying these mechanisms and their differences between males and females is essential to understanding insulin actions and their relationship with the possible development of metabolic diseases in both sexes.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Female
  • Glucose / metabolism
  • Insulin / metabolism
  • Insulin Receptor Substrate Proteins / metabolism
  • Insulin Resistance*
  • Male
  • Phosphorylation
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Wistar
  • Serine / metabolism
  • Sex Characteristics
  • Threonine / metabolism

Substances

  • Blood Glucose
  • Insulin
  • Insulin Receptor Substrate Proteins
  • Threonine
  • Serine
  • Proto-Oncogene Proteins c-akt
  • Glucose