Background: Aging is the most significant risk factor for dementia. Alzheimer's disease (AD) accounts for approximately 60-80% of all dementia cases in older adults. This study aimed to examine the relationship between finger movements and brain volume in AD patients using a voxel-based reginal analysis system for Alzheimer's disease (VSRAD) software.
Methods: Patients diagnosed with AD at the Center for Comprehensive Care and Research on Memory Disorders were included. The diagnostic criteria were based on the National Institute on Aging-Alzheimer's Association. A finger-tapping device was used for all measurements. Participants performed the tasks in the following order: with their non-dominant hand, dominant hand, both hands simultaneously, and alternate hands. Movements were measured for 15 s each. The relationship between distance and output was measured. Magnetic resonance imaging measurements were performed, and VSRAD was conducted using sagittal section 3D T1-weighted images. The Z-score was used to calculate the severity of medial temporal lobe atrophy. Pearson's product-moment correlation coefficient analyzed the relationship between the severity of medial temporal lobe atrophy and mean values of the parameters in the finger-tapping movements. The statistical significance level was set at <5%. The calculated p-values were corrected using the Bonferroni method.
Results: Sixty-two patients were included in the study. Comparison between VSRAD and MoCA-J scores corrected for p-values showed a significant negative correlation with the extent of gray matter atrophy (r = -0. 52; p< 0.001). A positive correlation was observed between the severity of medial temporal lobe atrophy and standard deviation (SD) of the distance rate of velocity peak in extending movements in the non-dominant hand (r = 0. 51; p< 0.001).
Conclusions: The SD of distance rate of velocity peak in extending movements extracted from finger taps may be a useful parameter for the early detection of AD and diagnosis of its severity.