Background: Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease resulting in cognitive and non-cognitive deficits. Aluminum is recognized as a risk factor for the etiology, pathogenesis, and progression of AD. The present study was designed to determine the effects of p-coumaric acid (p-CA), a phenolic compound, on spatial cognitive ability and non-cognitive functions and to identify the role of oxidative stress and inflammation in an AD rat model induced by aluminum chloride (AlCl3).
Methods: Both AlCl3 (100 mg/kg/day; P.O.) and p-CA (100 mg/kg/day; P.O.) treatments were given for six consecutive weeks. During the fifth and sixth weeks of the treatment period, the cognitive and non-cognitive functions of the rats were assessed using standard behavioral tests. Additionally, oxidative-antioxidative status, inflammatory markers, and histological changes were evaluated in the cerebral cortex and hippocampal regions of the rats.
Results: The results of this study showed that AlCl3 exposure enhanced anxiety-/depression-like behaviors, reduced locomotor/exploratory activities, and impaired spatial learning and memory. These cognitive and non-cognitive disturbances were accompanied by increasing oxidative stress, enhancing inflammatory response, and neuronal loss in the studied brain regions. Interestingly, treatment with p-CA alleviated all the above-mentioned neuropathological changes in the AlCl3-induced AD rat model.
Conclusion: The findings suggest that both anti-oxidative and anti-inflammatory properties of p-CA may be the underlying mechanisms behind its beneficial effect in preventing neuronal loss and improving cognitive and non-cognitive deficits associated with AD.
Keywords: Aluminum chloride; Alzheimer’s disease; Inflammation; Non-cognitive disturbances; Oxidative stress; p-Coumaric acid.
Copyright © 2022 Elsevier B.V. All rights reserved.