Ossification of growth plate cartilage mediates longitudinal extension of long bones. Biomechanical and biochemical disruptions of growth plate function may lead to abnormal bone growth. In humans and animals, severe dietary vitamin D deficiency can lead to rickets which features growth plate widening, resulting in abnormalities in growth. However, effects of marginal vitamin D deficiencies on growth plates are not well understood. The purpose of this study was to examine the effects of a vitamin D deficient diet in the 26-day nursery phase on mechanical properties (ultimate normal stress, ultimate shear stress, ultimate strain, and tangent modulus) of porcine growth plate. Standard uniaxial tensile tests were applied on bone-growth plate-bone sections and the total stress was decomposed into normal stress and shear stress. Ultimate shear stress and ultimate strain traits were lower in the vitamin D deficient group than in the control. Regional differences were observed in all four variables. Ultimate normal stress was higher in the anterior region, which was consistent with a previous study. Sex differences were detected in ultimate normal stress, which was higher in females than in males. Interestingly, the classical finding of growth plate widening seen in severe vitamin D deficiency was not observed in the pigs with marginal vitamin D deficiency utilized in this study.
Keywords: Dietary vitamin D deficiency; Growth plate; Modulus; Shear; Tension.
Copyright © 2022 Elsevier Ltd. All rights reserved.