We present a topical drug delivery mechanism through the ear canal to the middle and inner ear using liposomal nanoparticles without disrupting the integrity of the tympanic membrane. The current delivery method provides a noninvasive and safer alternative to transtympanic membrane injections, ear tubes followed by ear drops administration, and systemic drug formulations. We investigate the capability of liposomal NPs, particularly transfersomes (TLipo), used as drug delivery vesicles to penetrate the tympanic membrane (TM) and round window membrane (RWM) with high affinity, specificity, and retention time. The TLipo is applied to the ear canal and found to pass through the tympanic membrane quickly in 3 h post drug administration. They are identified in the middle ear cavity 6 h and in the inner ear 24 h after drug administration. We performed cytotoxicity in vitro and ototoxicity in vivo studies. Cell viability shows no significant difference between the applied TLipo concentration and control. Furthermore, auditory brainstem response (ABR) reveals no hearing loss in 1 week and 1 month post-administration. Immunohistochemistry results demonstrate no evidence of hair cell loss in the cochlea at 1 month following TLipo administration. Together, the data suggested that TLipo can be used as a vehicle for topical drug delivery to the middle ear and inner ear.
Keywords: drug delivery systems; ear infectious diseases; elastic nanoparticles; middle and inner ear; otitis media; topical delivery; transfersomes.