The propensity of viruses to co-opt host cellular machinery by reprogramming the host's RNA-interference machinery has been a major focus of research, however, regulation of host defense mechanisms by virus-encoded miRNA, is an additional regulatory realm gaining momentum in the arena of host-viral interactions. The Human Cytomegalovirus (HCMV) miRNAs, regulate many cellular pathways alone or in concordance with HCMV proteins, thereby paving a conducive environment for successful infection in the human host. We show that HCMV miRNA, hcmv-miR-UL148D inhibits staurosporine-induced apoptosis in HEK293T cells. We establish that ERN1 mRNA is a bonafide target of hcmv-miR-UL148D and its encoded protein IRE1α is translationally repressed by the overexpression of hcmv-miR-UL148D resulting in the attenuation of apoptosis. Unlike the host microRNA seed sequence (6-8 nucleotides), hcmv-miR-UL148D has long complementarity to 3' UTR of ERN1 mRNA resulting in mRNA degradation. The repression of IRE1α by the hcmv-miR-UL148D further downregulates Xbp1 splicing and c-Jun N-terminal kinase phosphorylation thus regulating ER-stress and ER-stress induced apoptotic pathways. Strikingly, depletion of ERN1 attenuates staurosporine-induced apoptosis which further suggests that hcmv-miR-UL148D functions through regulation of its target ERN1. These results uncover a role for hcmv-miR-UL148D and its target ERN1 in regulating ER stress-induced apoptosis.