Advances in magnetic field-assisted electrolyte's physicochemical properties and electrokinetic parameters: A case study on the response ability of chloramphenicol on Fe3O4@carbon spheres-based electrochemical nanosensor

Anal Chim Acta. 2022 Oct 9:1229:340398. doi: 10.1016/j.aca.2022.340398. Epub 2022 Sep 15.

Abstract

Despite the utilization of external magnetic field (MF) in promoting the intrinsic unique features of magnetic nanomaterials in many different applications has been reported, however the origin of MF-dependent electrochemical behaviors as well as the electrochemical response of analytes at the electrode in sensor applications is still not clear. In this report, the influence of MF on the electrolyte's physicochemical properties (polarization, mass transport, charge/electron transfer) and electrode's properties (conductivity, morphology, surface area, interaction, adsorption capability, electrocatalytic ability) was thoroughly investigated. Herein, the working electrode surface was modified with carbon spheres (CSs), magnetic nanoparticles (Fe3O4NPs), and their nanocomposites (Fe3O4@CSs), respectively. Then, they were directly used to enhance the electrochemical characteristics and response-ability of chloramphenicol (CAP). More interestingly, a series of various kinetic parameters related to the diffusion-controlled process of K3[Fe(CN)6]/K4[Fe(CN)6)] and the adsorption-controlled process of CAP were calculated at the bare electrode and the modified electrodes with and without the presence of MF. These parameters not only exhibit the crucial role of the modification of electrode surface with the proposed materials but also show positive impacts of the presence of external MF. Besides, the mechanism and hypothesis for the enhancements were proposed and discussed in detail, further demonstrating the development potential of using Fe3O4@CS nanocomposites with MF assistant for advanced energy, environmental, and sensor related-applications.

Keywords: Carbon spheres; Chloramphenicol; Electrochemical sensor; External magnetic field; Iron oxides.

MeSH terms

  • Carbon* / chemistry
  • Chloramphenicol*
  • Electrochemical Techniques
  • Electrodes
  • Electrolytes
  • Magnetic Fields

Substances

  • Electrolytes
  • Chloramphenicol
  • Carbon