Bud dormancy is essential for perennial trees that survive the cold winters and to flower on time in the following spring. Histone modifications have been reported to be involved in the control of the dormancy cycle and DAM/SVPs are considered targets. However, how the histone modification marks are added to the specific gene loci during bud dormancy cycle is still unknown. Using yeast-two hybrid library screening and co-immunoprecipitation assays, we found that PpyABF3, a key protein regulating bud dormancy, recruits Complex of Proteins Associated with Set1-like complex via interacting with PpyWDR5a, which increases the H3K4me3 deposition at DAM4 locus. Chromatin immunoprecipitation-quantitative polymerase chain reaction showed that PpyGA2OX1 was downstream gene of PpyABF3 and it was also activated by H3K4me3 deposition. Silencing of GA2OX1 in pear calli and pear buds resulted in a similar phenotype with silencing of ABF3. Furthermore, overexpression of PpyWDR5a increased H3K4me3 levels at DAM4 and GA2OX1 loci and inhibited the growth of pear calli, whereas silencing of PpyWDR5a in pear buds resulted in a higher bud-break percentage. Our findings provide new insights into how H3K4me3 marks are added to dormancy-related genes in perennial woody plants and reveal a novel mechanism by which ABF3 integrates abscisic acid signaling and gibberellic acid catabolism during bud dormancy maintenance.
Keywords: Pyrus pyrifolia; ABF3; COMPASS-like; GA2OX1; H3K4me3; bud dormancy.
© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.