Functionalizing Carbon Nanotubes with Bis(2,9-dialkyl-1,10-phenanthroline)copper(II) Complexes for the Oxygen Reduction Reaction

Inorg Chem. 2022 Sep 26;61(38):14997-15006. doi: 10.1021/acs.inorgchem.2c01791. Epub 2022 Sep 15.

Abstract

A new ligand, namely, 2-(5-(pyren-1-yl)pentyl)-9-methyl-1,10-phenanthroline, as well as new bis(2,9-dialkyl-1,10-phenanthroline)copper(II) complexes were designed, which were immobilized on multiwalled carbon nanotube (MWCNT) electrodes. These complexes show a high tendency of autoreduction into their copper(I) form according to electrochemical and EPR experiments. These complexes exhibit strong interactions with MWCNT sidewalls either with or without anchor functions such as the pyrene moiety. The pyrene-modified derivative can be electropolymerized on glassy carbon and MWCNT electrodes to form a poly-[bis(2-(5-(pyren-1-yl)pentyl)-9-methyl-1,10-phenanthroline)copper(II)] metallopolymer film. Furthermore, these MWCNT-supported bis(2,9-dialkyl-1,10-phenanthroline)copper complexes demonstrate a low overpotential for a 4H+/4e- oxygen reduction reaction at pH 5 with an onset potential of 0.86 V versus RHE. Integration of these functionalized MWCNTs at gas-diffusion electrodes of H2/air fuel cells led to a high open-circuit voltage of 0.84 V and a maximum current density of 1.77 mW cm-2 using a Pt/C anode.