Nanoarchitectonics for Photo-Controlled Intracellular Drug Release in Immune Modulation

ACS Appl Mater Interfaces. 2022 Sep 28;14(38):42976-42987. doi: 10.1021/acsami.2c12440. Epub 2022 Sep 14.

Abstract

Local stimuli differentiate monocytes into M2-like macrophages that mechanistically drive the pathologies in cancer and age-related macular degeneration (AMD). A photo-controlled nanodrug that halts macrophage polarization through Rho-associated kinase (ROCK) inhibition was developed. A small-molecule ROCK inhibitor, fasudil, was conjugated to a photo-responsive group and a short poly(ethylene glycol) (PEG) chain. This resulted in the novel amphiphilic prodrug, PEG-2-(4'-(di(prop-2-yn-1-yl)amino)-4-nitro-[1,1'-biphenyl]-yl)propan-1-ol (PANBP)-Fasudil, that spontaneously formed micelles. Ultraviolet (UV) irradiation of PEG-PANBP-Fasudil nanoparticles rapidly released fasudil. For visualization of linker degradation, a reporter nanoprobe was synthesized, in which 2-Me-4-OMe TokyoGreen (TG), a fluorophore that does not fluoresce in conjugation, was incorporated. Irradiation of nanoprobe-laden monocytes activated the reporter fluorophore. Cytokine stimulation differentiated monocytes into macrophages, while UV irradiation prevented polarization of PEG-PANBP-Fasudil nanoparticle-laden monocytes. Nanoarchitectonics-based design opens new possibilities for intracellular drug delivery and precise spatiotemporal immune cell modulation toward the development of new therapies.

Keywords: ROCK inhibitor; Rho kinase; image-guided therapy; nanomedicine; prodrug; targeted drug delivery.

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / analogs & derivatives
  • Cytokines / metabolism
  • Drug Liberation
  • Mercaptoethanol
  • Micelles
  • Polyethylene Glycols / metabolism
  • Prodrugs*
  • rho-Associated Kinases*

Substances

  • Cytokines
  • Micelles
  • Prodrugs
  • Polyethylene Glycols
  • Mercaptoethanol
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • rho-Associated Kinases
  • fasudil