Dual assessment of transcriptional and metabolomic responses in the American dog tick following exposure to different pesticides and repellents

Ticks Tick Borne Dis. 2022 Nov;13(6):102033. doi: 10.1016/j.ttbdis.2022.102033. Epub 2022 Aug 31.

Abstract

The American dog tick, Dermacentor variabilis, is a major pest to humans and animals, serving as a vector to Rickettsia rickettsii, a bacterium responsible for Rocky Mountain spotted fever, and Francisella tularensis, which is responsible for tularemia. Although several tactics for management have been deployed, very little is known about the molecular response following pesticidal treatments in ticks. In this study, we used a combined approach utilizing transcriptomics and metabolomics to understand the response of the American dog tick to five common pesticides (amitraz, chlorpyrifos, fipronil, permethrin, and propoxur), and analyzed previous experimental data utilizing DEET repellent. Exposure to different chemicals led to significant differential expression of a varying number of transcripts, where 42 were downregulated and only one was upregulated across all treatments. A metabolomic analysis identified significant changes in acetate and aspartate levels following exposure to chlorpyrifos and propoxur, which was attributed to reduced cholinesterase activity. Integrating the metabolomics study with RNA-seq analysis, we found the physiological manifestations of the combined metabolic and transcriptional differences, revealing several novel biomolecular pathways. In particular, we discovered the downregulation of amino sugar metabolism and methylhistidine metabolism after permethrin exposure, as well as an upregulation of glutamate metabolism in amitraz treated samples. Understanding these altered biochemical pathways following pesticide and repellent exposure can help us formulate more effective chemical treatments to reduce the burden of ticks.

Keywords: Dermacentor variabilis; Functional overlap mapping; Metabolomics; Pesticides; Repellents; Transcriptional analyses; Transcriptomics.