Nitritation/denitritation is a promising strategy to treat sludge digester liquor but would be unstable and inefficient at extremely low C/N ratios. Here, a novel electrochemically assisted sequencing batch biofilm reactor (E-SBBR) was established to treat synthetic/real sludge digester liquor with decreasing C/N ratios. The results showed that the E-SBBR achieved stable nitritation and appreciable TN removal (>70 %) even at C/N < 0.5. The high-strength free ammonium (FA) (91.1-132.8 mg NH3-N/L) and long inhibition time (>9h) magnified by electrolysis promoted the robustness of nitritation through efficient nitrite-oxidizing bacteria elimination. Meanwhile, mass balance denoted that heterotrophic denitritation dominated in the enhanced TN removal and relied on carbon supplementation from cell apoptosis/lysis stimulated by electrolysis and high-strength FA, further supported by the recovery of heterotrophic denitrifiers, fermentation bacteria, and relevant functional genes at extremely low C/N ratios. This study provides a novel nitrogen removal approach for the sludge digester liquor treatment.
Keywords: Denitritation; Electrolysis; Low C/N ratio; Nitritation; Sludge digester liquor.
Copyright © 2022 Elsevier Ltd. All rights reserved.