A chiral structure is formed by the optical radiation force induced by a circularly polarized light that has spin angular momentum; chiral structures are expected to be used for light control devices and molecular chirality discrimination devices. In this paper, we clarify the relationship between the differences in the distributions of the optical radiation force and the possibility of formation of chiral structures. We first simulate the optical radiation force distribution in the case of a Gaussian beam that successfully forms a chiral structure. Given a vector [Formula: see text] with a centre of the light spot [Formula: see text] and polar coordinates [Formula: see text], and an optical radiation force vector [Formula: see text] at [Formula: see text], the angle [Formula: see text] and [Formula: see text] must be constant with respect to the declination angle [Formula: see text] for a chiral structure to form. These conditions are fulfilled in the case of a 6-beam interference pattern, but not in the case of a 4-beam interference pattern, which is consistent with the result that no chiral structure is formed in the latter case. The equations derived for simulation of optical radiation force distribution can be used for any optical intensity distribution, and will be of great help in the research of any dielectrics deformation.
© 2022. The Author(s).