Improving Respiratory Timing Estimation Using Quality Indexing and Electrocardiogram-Derived Respiration

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:3249-3252. doi: 10.1109/EMBC48229.2022.9871873.

Abstract

Numerous applications require accurate estimation of respiratory timings. Respiratory effort (RSP) measurement is a popular approach to accomplish this, especially when the tightness of the sensing belt around the chest can be ensured. In less controlled settings, however, belt looseness and artifacts from movement of the belt on the chest can corrupt the signal. This paper demonstrates that respiration quality indexing and outlier removal can help mitigate these issues, improving estimates of respiration rate (RR), inspiration time (Ti), and expiration time (Te)., In a sample of 15 healthy human participants undergoing a protocol of five controlled breathing exercises in four postures each, electrocardiogram (ECG) and RSP signals were collected. RSP signals were processed to extract breath-by-breath estimates of RR, Ti, and Te. These estimates were compared against ground truth spirometry-based estimates using Bland-Altman analysis. We find that incorporating quality indexing and outlier removal prior to feature extraction improves the 95% limits of agreement by 10-40%. We also find that by using ECG-derived respiration (EDR) during periods of RSP artifact, the data removal necessary for accurate respiratory timing estimation is significantly reduced ( for all postures). These findings encourage the use of quality assessment and EDR to enhance the robustness of RR, Ti, and Te estimation from RSP signals. Clinical Relevance- Detecting stimulus-induced or pathological changes in respiratory function can enhance our understanding and monitoring of respiratory health. Quality assessment and the use of EDR help accomplish this by enabling more accurate measurement of respiratory timings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Electrocardiography / methods
  • Humans
  • Respiration
  • Respiratory Rate*
  • Signal Processing, Computer-Assisted*