Towards Adversarial Robustness with Early Exit Ensembles

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul:2022:313-316. doi: 10.1109/EMBC48229.2022.9871347.

Abstract

Deep learning techniques are increasingly used for decision-making in health applications, however, these can easily be manipulated by adversarial examples across different clinical domains. Their security and privacy vulnerabilities raise concerns about the practical deployment of these systems. The number and variety of the adversarial attacks grow continuously, making it difficult for mitigation approaches to provide effective solutions. Current mitigation techniques often rely on expensive re-training procedures as new attacks emerge. In this paper, we propose a novel adversarial mitigation technique for biosignal classification tasks. Our approach is based on recent findings interpreting early exit neural networks as an ensemble of weight sharing sub-networks. Our experiments on state-of-the-art deep learning models show that early exit ensembles can provide robustness generalizable to various white box and universal adversarial attacks. The approach increases the accuracy of vulnerable deep learning models up to 60 percentage points, while providing adversarial mitigation comparable to adversarial training. This is achieved without previous exposure to the adversarial perturbation or the computational burden of re-training.

MeSH terms

  • Neural Networks, Computer*