In this paper, we present a computational fluid dynamic (CFD) analysis to capture the effect of physical stress and stenosis severity in coronary arteries leading to changes in coronary supply demand oxygen equilibrium. We propose a coupled Od-3d coronary vessel model to predict the variation in flow dynamics of coronary as well as arterial system, modeled using an in-silico model replicating cardiovascular hemodynamics. CFD simulation were solved using subject specific CT scan for coronary and arterial flow and pressure along with metrics related to arterial wall shear stress. Simulations were performed for three heart rates (75, 90 and 120 bpm) and four stenosis states representing different stages of Coronary artery disease (CAD) namely healthy, 50%, 75%, 90% blockage in left anterior descending artery (LAD). Myocardial oxygen supply demand equilibrium were calculated for each cases using hemodynamic surrogate markers naming Diastolic pressure time index for supply and Tension time index for demand. The proposed 0d-3d coupled hemodynamic model of the coronary vessel bed along with supply-demand equilibrium estimated for different stress level and stenosis severity may provide useful insights on the dynamics of CAD manifestation and predict vulnerable regions in coronary bed for early screening and interventions.