A distinct platinum oxide nanocluster (PtOx ) was developed, consisting of only Pt-O bond by a defect-engineered Al metal-organic framework (MOF) (BIT-72) with superior formaldehyde (HCHO) degradation activity and stability. With only 0.015 wt % Pt loading, PtOx @BIT-72-DE could degrade HCHO with 100 % conversion continuously for at least 200 h under HCHO concentration of 25 ppm and gas hourly space velocity of 60000 mL g-1 h-1 at room temperature. Furthermore, its specific rate (446 mmolHCHO gPt -1 h-1 ) was higher than for traditional Pt-based catalysts and single-atom Pt catalysts. Moreover, the cost of PtOx @BIT-72-DE was lowered to 0.0769 $ g-1 , which could significantly facilitate its commercial application. This study demonstrates the promising potential of MOFs in the design of HCHO degradation catalysts.
Keywords: defect engineering; formaldehyde; heterogeneous catalysis; metal-organic frameworks; nanoclusters.
© 2022 Wiley-VCH GmbH.