Background: The associations between mammographic radiomics and breast cancer clinical endpoints are unclear. We aimed to identify mammographic radiomics features associated with breast cancer prognosis.
Methods: Nested from a large breast cancer cohort in our institution, we conducted an extreme case-control study consisting of 207 cases with any invasive disease-free survival (iDFS) endpoint <5 years and 207 molecular subtype-matched controls with >5-year iDFS. A total of 632 radiomics features in craniocaudal (CC) and mediolateral oblique (MLO) views were extracted from pre-treatment mammography. Logistic regression was used to identify iDFS-associated features with multiple testing corrections (Benjamini-Hochberg method). In a subsample with RNA-seq data (n = 96), gene set enrichment analysis was employed to identify pathways associated with lead features.
Results: We identified 15 iDFS-associated features from CC-view yet none from MLO-view. S(1,-1)SumAverg and WavEnLL_s-6 were the lead ones and associated with favourable (OR 0.64, 95% CI 0.42-0.87, P = 0.01) and poor iDFS (OR 1.53, 95% CI 1.31-1.76, P = 0.01), respectively. Both features were associated with eight pathways (primarily involving cell cycle regulation) in tumour but not adjacent normal tissues.
Conclusion: Our findings suggest mammographic radiomics features are associated with breast cancer iDFS, potentially through pathways involving cell cycle regulation.
© 2022. The Author(s).