Prediction of Individual Lymph Node Metastatic Status in Esophageal Squamous Cell Carcinoma Using Routine Computed Tomography Imaging: Comparison of Size-Based Measurements and Radiomics-Based Models

Ann Surg Oncol. 2022 Dec;29(13):8117-8126. doi: 10.1245/s10434-022-12207-7. Epub 2022 Aug 26.

Abstract

Background: Lymph node status is vital for prognosis and treatment decisions for esophageal squamous cell carcinoma (ESCC). This study aimed to construct and evaluate an optimal radiomics-based method for a more accurate evaluation of individual regional lymph node status in ESCC and to compare it with traditional size-based measurements.

Methods: The study consecutively collected 3225 regional lymph nodes from 530 ESCC patients receiving upfront surgery from January 2011 to October 2015. Computed tomography (CT) scans for individual lymph nodes were analyzed. The study evaluated the predictive performance of machine-learning models trained on features extracted from two-dimensional (2D) and three-dimensional (3D) radiomics by different contouring methods. Robust and important radiomics features were selected, and classification models were further established and validated.

Results: The lymph node metastasis rate was 13.2% (427/3225). The average short-axis diameter was 6.4 mm for benign lymph nodes and 7.9 mm for metastatic lymph nodes. The division of lymph node stations into five regions according to anatomic lymph node drainage (cervical, upper mediastinal, middle mediastinal, lower mediastinal, and abdominal regions) improved the predictive performance. The 2D radiomics method showed optimal diagnostic results, with more efficient segmentation of nodal lesions. In the test set, this optimal model achieved an area under the receiver operating characteristic curve of 0.841-0.891, an accuracy of 84.2-94.7%, a sensitivity of 65.7-83.3%, and a specificity of 84.4-96.7%.

Conclusions: The 2D radiomics-based models noninvasively predicted the metastatic status of an individual lymph node in ESCC and outperformed the conventional size-based measurement. The 2D radiomics-based model could be incorporated into the current clinical workflow to enable better decision-making for treatment strategies.

MeSH terms

  • Esophageal Neoplasms* / diagnostic imaging
  • Esophageal Neoplasms* / pathology
  • Esophageal Neoplasms* / surgery
  • Esophageal Squamous Cell Carcinoma* / diagnostic imaging
  • Esophageal Squamous Cell Carcinoma* / pathology
  • Esophageal Squamous Cell Carcinoma* / surgery
  • Humans
  • Lymph Nodes / diagnostic imaging
  • Lymph Nodes / pathology
  • Lymph Nodes / surgery
  • Lymphatic Metastasis / pathology
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods