Graphene-Modified Co-B-P Catalysts for Hydrogen Generation from Sodium Borohydride Hydrolysis

Nanomaterials (Basel). 2022 Aug 9;12(16):2732. doi: 10.3390/nano12162732.

Abstract

Sodium borohydride (NaBH4) is considered a good candidate for hydrogen generation from hydrolysis because of its high hydrogen storage capacity (10.8 wt%) and environmentally friendly hydrolysis products. However, due to its sluggish hydrogen generation (HG) rate in the water, it usually needs an efficient catalyst to enhance the HG rate. In this work, graphene oxide (GO)-modified Co-B-P catalysts were obtained using a chemical in situ reduction method. The structure and composition of the as-prepared catalysts were characterized, and the catalytic performance for NaBH4 hydrolysis was measured as well. The results show that the as-prepared catalyst with a GO content of 75 mg (Co-B-P/75rGO) exhibited an optimal catalytic efficiency with an HG rate of 12087.8 mL min-1 g-1 at 25 °C, far better than majority of the findings that have been reported. The catalyst had a good stability with 88.9% of the initial catalytic efficiency following 10 cycles. In addition, Co-, B-, and P-modified graphene showed a synergistic effect improving the kinetics and thermodynamics of NaBH4 hydrolysis with a lower activation energy of 28.64 kJ mol-1. These results reveal that the GO-modified Co-B-P catalyst has good potential for borohydride hydrolysis applications.

Keywords: NaBH4; catalytic activity; graphene oxide; hydrolysis.