Purpose: Miscarriage is one of the most common complications of pregnancy. Although chromosomal abnormalities of the embryo is a well-known cause of miscarriage, a lot of cases remain unexplained, with immunologic and vascular growth alterations being considered as probable causes. Chemokines are produced by a variety of cells and exhibit several functions including both pro and anti-angiogenic properties. In this study, we investigated the role of the angiogenic and angiostatic chemokines in placenta and decidua tissues from spontaneous and induced abortions.
Methods: Total RNA was extracted from the placenta and decidua tissues, which was then purified and converted into cDNA. Real-time PCR was then performed for the expression of the angiogenic CCL2, CCL5, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8 and CXCL4, and the angiostatic CXCL9, CXCL10, CXCL11, CXCL12 and CXCL14 and results were then statistically analyzed.
Results: Regarding the placenta, CXCL7 (2.29-fold, 2.16-2.38, p < 0.05), CXCL4 (1.01-fold, 0.74-4.447, p < 0.05), CXCL9 (0.87-fold, 0.43-1.34, p < 0.05) and CXCL11 (0.31-fold, 0.22-0.45, p < 0.05) were altered in spontaneous abortions. CCL2, CCL5, CXCL2-3, CXCL8, CXCL10, CXCL12 and CXCL14 were not statistically significant altered. Regarding the decidua, CXCL7 (7.13-fold, 6.32-7.54, p < 0.01), CXCL8 (11.02-fold, 8.58-13.45, p < 0.05), CCL20 (1.21-fold, 0.29-1.89, p < 0.05) and CXCL9 (5.49-fold, 3.67-6.39, p < 0.05) were overexpressed in spontaneous abortions. CXCL2-4, CCL2, CCL5, CXCL10-12 and CXCL14 did not show any differences. The expression of the chemokines CXCL1, CXCL5-6 was absent in either tissue or group.
Conclusion: Our results show that the overexpression of angiostatic and diminished expression of angiogenic chemokines takes place in the placenta and decidua of spontaneous abortions, suggesting that dysregulation of angiogenesis could be a contributive factor to the pathogenesis of miscarriage.
Keywords: Angiogenesis; CCL; CXCL; Chemokines; Miscarriage; Spontaneous abortion.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.