Zinc Binding Inhibits Cellular Uptake and Antifungal Activity of Histatin-5 in Candida albicans

ACS Infect Dis. 2022 Sep 9;8(9):1920-1934. doi: 10.1021/acsinfecdis.2c00289. Epub 2022 Aug 23.

Abstract

Histatin-5 (Hist-5) is a polycationic, histidine-rich antimicrobial peptide with potent antifungal activity against the opportunistic fungal pathogen Candida albicans. Hist-5 can bind metals in vitro, and metals have been shown to alter the fungicidal activity of the peptide. Previous reports on the effect of Zn2+ on Hist-5 activity have been varied and seemingly contradictory. Here, we present data elucidating the dynamic role Zn2+ plays as an inhibitory switch to regulate Hist-5 fungicidal activity. A novel fluorescently labeled Hist-5 peptide (Hist-5*) was developed to visualize changes in internalization and localization of the peptide as a function of metal availability in the growth medium. Hist-5* was verified for use as a model peptide and retained antifungal activity and mode of action similar to native Hist-5. Cellular growth assays showed that Zn2+ had a concentration-dependent inhibitory effect on Hist-5 antifungal activity. Imaging by confocal microscopy revealed that equimolar concentrations of Zn2+ kept the peptide localized along the cell periphery rather than internalizing, thus preventing cytotoxicity and membrane disruption. However, the Zn-induced decrease in Hist-5 activity and uptake was rescued by decreasing the Zn2+ availability upon addition of a metal chelator EDTA or S100A12, a Zn-binding protein involved in the innate immune response. These results lead us to suggest a model wherein commensal C. albicans may exist in harmony with Hist-5 at concentrations of Zn2+ that inhibit peptide internalization and antifungal activity. Activation of host immune processes that initiate Zn-sequestering mechanisms of nutritional immunity could trigger Hist-5 internalization and cell killing.

Keywords: Candida albicans; Histatin-5; antifungal; antimicrobial peptide; microscopy; zinc.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antifungal Agents* / metabolism
  • Antifungal Agents* / pharmacology
  • Candida albicans*
  • Chelating Agents / pharmacology
  • Histatins / metabolism
  • Histatins / pharmacology
  • Peptides / pharmacology
  • Zinc / metabolism
  • Zinc / pharmacology

Substances

  • Antifungal Agents
  • Chelating Agents
  • Histatins
  • Peptides
  • Zinc