Hexagonal boron nitride/graphene (hBN/G) vertical heterostructures have attracted extensive attention, owing to the unusual physical properties for basic research and electronic device applications. Here we report a facile deposition-segregation technique to synthesize hBN/G heterostructures on recyclable platinum (Pt) foil via low pressure chemical vapor deposition. The growth mechanism of the vertical hBN/G is demonstrated to be the surface deposition of hBN on top of the graphene segregated from the Pt foil with pre-dissolved carbon. The thickness of hBN and graphene can be controlled separately from sub-monolayer to multilayer through the fine control of the growth parameters. Further investigations by Raman, scanning Kelvin probe microscopy and transmission electron microscope show that the hBN/G inclines to form a heterostructure with strong interlayer coupling and with interlayer twist angle smaller than 1.5°. This deposition-segregation approach paves a new pathway for large-scale production of hBN/G heterostructures and could be applied to synthesize of other van der Waals heterostructures.
Keywords: chemical vapor deposition; hBN/graphene; heterostructure; segregation; surface deposition.
© 2022 IOP Publishing Ltd.