DOUBLY DEBIASED LASSO: HIGH-DIMENSIONAL INFERENCE UNDER HIDDEN CONFOUNDING

Ann Stat. 2022 Jun;50(3):1320-1347. doi: 10.1214/21-aos2152. Epub 2022 Jun 16.

Abstract

Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden confounding and propose the Doubly Debiased Lasso estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.

Keywords: 62F12; Causal Inference; Dense Confounding; Linear Model; Primary 62E20; Spectral Deconfounding; Structural Equation Model; secondary 62J07.