Recent trends in ecological agriculture practices are focused on finding optimal solutions for reuse and recycling of pelt waste from tannery industry. In this context, new collagen-based hydrogels with NPK nutrients encapsulated have been functionalized with synthetic and natural additives, including starch and dolomite, to be used as composite fertilizers. Possible interaction mechanisms are presented in case of each synthetic or natural additive, ranging from strong linkages as a result of esterification reactions until hydrogen bonds and ionic valences. Such interactions are responsible for nutrient release towards soil and plants. These fertilizers have been adequately characterized for their physical chemical and biochemical properties, including nutrient content, and tested on three Greek poor soils and one Romanian normal soil samples. A series of agrochemical tests have been developed by evaluation of uptake and leaching of nutrients on mixtures of sand and soils. It was observed that the clay soil exhibits a higher adsorption capacity than the loam soil for most of nutrients leached from the composite fertilizers tested, with this being correlated with a slower control release towards cultivated plants, thus assuring efficiency of these collagen-based composite fertilizers. The most significant effect was obtained in the case of collagen-based fertilizer functionalized with starch.
Keywords: advanced fertilizers; agrochemical tests; collagen-based composites; interaction mechanisms; leather waste recycling.