4nπ Stable Multitasking Azapentacene: Acidochromism, Hole Mobility, and Visible Light Photoresponse

ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37982-37989. doi: 10.1021/acsami.2c04490. Epub 2022 Aug 10.

Abstract

Herein, we describe the synthesis, characterization, and optoelectronic investigation of a stable 4nπ dihydrotetraazapentacene derivative. The neutral dihydrotetraazapentacene contains a 24π-conjugated N-heteroacene core with two phenyl pendants appended thereof. The exceptional stability of this formally antiaromatic π-system is attributed to the fused dihydropyrazine ring, which has ethenamine (enamine) conjugations, and hence, the π-electrons delocalize over the nearly planar azapentacene core to endow with a global aromatic characteristic. The embedded dihydropyrazine also offers an additional Clar's sextet with enhanced aromaticity. The present dihydrotetraazapentacene can be considered as a multitasking N-heteroacene, which showed photoresponsive nature under visible light illumination, acidochromism in solution, and p-type charge transport with an appreciable field-effect hole mobility of 0.02 cm2 V-1 s-1 and a bulk p-type mobility of 0.98 × 10-4 cm2 V-1 s-1 in the space charge-limited regime of operation measured in the hole-only device. Nucleus-independent chemical shift calculation, anisotropy of the induced current density plot, and anisotropic mobility calculation were performed to support the experimental findings.

Keywords: OFET; anisotropic charge carrier mobility; azapentacene; hole mobility; photodetector.