A tight-binding model for the electronic structure of MXene monolayers

Nanoscale. 2022 Aug 18;14(32):11760-11769. doi: 10.1039/d2nr00745b.

Abstract

The family of two-dimensional transition metal carbides and nitrides, known as MXenes, has attracted substantial attention in science and technology. We obtain a parameterized minimal tight-binding model to provide an accurate description of both valence and conduction bands of a class of MXene monolayers named M2XT2 (with M = Sc, Zr, Ti; X = C; T = O, F) based on the band structures obtained within the framework of density functional theory. It is shown that the next nearest-neighbor 13-band p3d5 model is fairly sufficient to describe the electronic structure of these systems over a wide energy range. The obtained hopping and Slater-Koster parameters can be used to study the physical properties of MXene-based materials and nanostructures in the framework of the tight-binding model.