Background: Ultra-low dose computed tomography (ULD-CT) was shown to be a good alternative to digital radiographs in various locations. This study aimed to assess the diagnostic sensitivity and specificity of ULD-CT versus digital radiographs in patients consulting for extremity traumas in emergency room.
Methods: Digital radiography and ULD-CT scan were performed in patients consulting at the emergency department (February-August 2018) for extremity traumas. Fracture detection was evaluated retrospectively by two blinded independent radiologists. Sensitivity and specificity were evaluated using best value comparator (BVC) and a Bayesian latent class model (LCM) approaches and clinical follow-up. Image quality, quality diagnostic and diagnostic confidence level were evaluated (Likert scale). The effective dose received was calculated.
Results: Seventy-six consecutive patients (41 men, mean age: 35.2±13.2 years), with 31 wrists/hands and 45 ankles/feet traumas were managed by emergency physicians. According to clinical data, radiography had 3 false positive and 10 false negative examinations, and ULD-CT, 2 of each. Radiography and ULD-CT specificities were similar; sensitivities were lower for radiography, with BVC and Bayesian. With Bayesian, ULD-CT and radiography sensitivities were 90% (95% CI: 87-93%) and 76% (95% CI: 71-81%, P<0.0001) and specificities 96% (95% CI: 93-98%) and 93% (95% CI: 87-97%, P=0.84). The inter-observer agreement was higher for ULD-CT for all subjective indexes. The effective dose for ULD-CT and radiography was 0.84±0.14 and 0.58±0.27 µSv (P=0.002) for hand/wrist, and 1.50±0.32 and 1.44±0.78 µSv (P=NS) for foot/ankle.
Conclusions: With an effective dose level close to radiography, ULD-CT showed better detection of extremities fractures in the emergency room and may allow treatment adaptation. Further studies need to be performed to assess impact of such examination in everyday practice.
Trial registration: ClinicalTrials.gov Identifier: NCT04832490.
Keywords: CT scan; Radiation dose; X-ray; emergency radiology; extremity traumatism.
2022 Quantitative Imaging in Medicine and Surgery. All rights reserved.