Sex Differentially Alters Secretion of Brain Extracellular Vesicles During Aging: A Potential Mechanism for Maintaining Brain Homeostasis

Neurochem Res. 2022 Nov;47(11):3428-3439. doi: 10.1007/s11064-022-03701-1. Epub 2022 Jul 29.

Abstract

Extracellular vesicles (EVs) in the brain play a role in neuronal homeostasis by removing intracellular material and regulating cell-to-cell communication. Given that sex and aging differentially modulate brain networks, we investigated sex-dependent differences in EV levels and content in the brain during aging. EVs were isolated from the brains of 3, 6, 12, 18, and 24 month-old female and male C57BL/6 J mice, and the levels of different EV species determined. While the number of plasma membrane-derived microvesicles and a subset of late endosomes-derived exosomes increased with age in the brain of female mice, no significant changes were seen in males. Mitochondria-derived mitovesicles in the brain increased during aging in both sexes, a change that may reflect aging-dependent alterations in mitochondrial function. These findings reveal enhanced turnover during aging in female brains, suggesting a mechanism for advantageous successful female brain aging and sex-depending different susceptibility to age-related neurodegenerative diseases.

Keywords: Aging; Brain; Exosomes; Extracellular vesicles; Microvesicles; Mitovesicles; Sex.

MeSH terms

  • Animals
  • Brain
  • Exosomes*
  • Extracellular Vesicles*
  • Female
  • Homeostasis
  • Male
  • Mice
  • Mice, Inbred C57BL