Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π-π stacking interactions are involved. Herein we demonstrate that the σ-σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ-σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π-π stacked molecular junctions formed between π-conjugated benzene rings. The current-voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green's function method reveal that efficient charge transport occurs between two molecules configured with σ-σ stacking interactions.
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.